ТЕМА НУКОВОЇ РОБОТИ

ЗАХИСНІ ВЛАСТИВОСТІ ПРОТИМІННИХ СИДІНЬ БОЙОВИХ БРОНЬОВАНИХ МАШИН

Мета роботи

підвищення захищеності екіпажів бойових броньованих машин шляхом обґрунтування раціональних параметрів конструкції протимінних сидінь

Наукове завдання

розробка методики обґрунтування раціональних параметрів конструкції протимінного сидіння бойових броньованих машин

Часткові завдання наукової роботи

1. Аналіз тенденцій розвитку протимінного захисту ББМ. Оцінка існуючого науковометодичного апарату щодо визначення реакції системи "людина-сидіння" на дію вибухового навантаження;

 Розробка математичної моделі реакції системи "людина-сидіння" при підриві ББМ на МВП;

 Розробка методики обґрунтування раціональних параметрів конструкції протимінного сидіння ББМ;

 Оцінка різних варіантів ЕПЕ протимінного сидіння ББМ та теоретичні дослідження ефективності роботи обраного варіанту ЕПЕ при вибуховому навантаженні;

5. Проведення експериментальних досліджень з визначення ефективності роботи та режимів деформації моделей ЕПЕ при дії навантаження, що відповідає вибуховому та порівняння отриманих результатів з теоретичними розрахунками. Проведення оцінки ефективності роботи протимінного сидіння з обраним варіантом ЕПЕ;

6. Розробка рекомендацій щодо підвищення захищеності екіпажів ББМ.

Об'єкт

Предмет

динамічна реакція системи "людина сидіння" на дію вибухового навантаження вплив значень параметрів конструкції протимінного сидіння на імовірність та ступінь тяжкості травмування екіпажу при підриві ББМ на МВП

Наукова новизна одержаних результатів

1. розроблено математичну модель визначення вибухового навантаження екіпажу, *яка на відміну від існуючих* аналітичних математичних моделей дозволяє враховувати складну геометрію конструкції ББМ та функцію дисипації енергії вибуху, а також враховувати тип, форму та кількість вибухової речовини;

2. розроблено методику обґрунтування раціональних параметрів конструкції протимінного сидіння ББМ, яка на відміну від існуючих враховує особливості вибухового навантаження складної геометрії корпусу ББМ і дозволяє провести оцінку імовірності та ступеню тяжкості ураження екіпажу за критерієм травмування хребта людини на етапі проектування та провести розрахунок і оптимізацію основних параметрів ЕПЕ протимінного сидіння;

 отримано нові експериментальні результати щодо кількісних і якісних залежностей між ефективністю роботи ЕПЕ з різними параметрами та виявлені особливостей їх деформування;

4. розроблено пропозиції щодо реалізації результатів дослідження для перспективних зразків ББМ.

Аналіз головних загроз майбутнього

Аналіз головних вимог до ББМ на період 2013-2023 рр.

АНАЛІЗ ШЛЯХІВ ПІДВИЩЕННЯ ЛОКАЛЬНОГО ЗАХИСТУ ЕКІПАЖУ ПРИ ПІДРИВІ ББМ НА МВП та СТАН ПРОБЛЕМИ

МАТЕМАТИЧНА МОДЕЛЬ РЕАКЦІЇ СИСТЕМИ "ЛЮДИНА - СИДІННЯ" НА ДІЮ ВИБУХОВОГО НАВАНТАЖЕННЯ

 $m_2(\ddot{\delta}_{12}+\ddot{z}_1) = k_3\delta_{23} - c_3\dot{\delta}_{23} - k_2\delta_{12} - c_2\dot{\delta}_{13},$

 $m_1(\ddot{\beta}_{01}+\ddot{z}_0) = k_3\delta_{12} - c_2\dot{\delta}_{12} - k_1\delta_{01} - c_1\dot{\delta}_{01}$

 $m_1\ddot{\mathcal{S}}_{01}(t) = -m_1\ddot{z}_0 + k_2\delta_{12} + c_2\dot{\delta}_{12} - k_1\delta_{01} - c_1\dot{\delta}_{01}$

 $T = \frac{\pi n \pi k a 3}{m_1 \ddot{z}_1(t)} = -F_{k_3} - F_{T3} + F_{k_2} + F_{T2}$

 $R_0 = 0.756\sqrt[3]{q}$

 $\delta_{l2} \Rightarrow$

Sach

ISSN =>

Zı

Zo

 $m_2 \ddot{\mathcal{S}}_{12}(t) = -m_2 \ddot{z}_1 + k_3 \delta_{23} + c_3 \dot{\delta}_{23} - k_2 \delta_{12} - c_2 \dot{\delta}_{12}$

 $m_1 \ddot{z}_1(t) = k_2 (z_2 - z_1) + c_2 (\dot{z}_2 - \dot{z}_1) - k_1 (z_1 - z_0) - c_1 (\dot{z}_1 - \dot{z}_0)$

ланка 2

при $R \le R \square$ - $I_{B\Gamma} = 500 \frac{q}{p^2} \sin \alpha$ - імпульс вибух. газів

при $R \ge R \square$ - $I = 630 \frac{q^{\frac{2}{3}}}{R}$ - імпульс ВУХ ланка 1

ЕПЕ сидіння k

днище

ЕП підлога

ЕП днище к

корпус ББМ

m

mo

z

q - потужність МВП (кг);

α - кут зустрічі вибухових газів з днищем ББМ;

6

т – маса відповідної ланки стеми "людина-сидіння";

z – переміщення відповідної ланки стеми "людина-сидіння";

k - коефіцієнти жорсткості відповідної ланки:

коефіцієнти тертя c відповідної панки:

Fnpym сила пружності відповідної ланки;

Fдемпф сила демпфування відповідної ланки:

δ – відносне переміщення від вихідного положення на відповідному відрізку.

МАТЕМАТИЧНА МОДЕЛЬ ДЛЯ ЧИСЛОВОГО РІШЕННЯ ВИБУХОВОГО НАВАНТАЖЕННЯ КОНСТРУКЦІЇ ББМ

МЕТОДИКА ОБГРУНТУВАННЯ РАЦІОНАЛЬНИХ ПАРАМЕТРІВ КОНСТРУКЦІЇ **8** ПРОТИМІННОГО СИДІННЯ ББМ

Підрив зразка здійснювався на заряді ВР масою 6 кг, але для об'єктивності визначення реальної потужності вибуху, необхідно врахувати *k* - коефіцієнт зменшення маси ВР з поправкою на піщаний грунт:

$$k = \frac{E}{E_{\Gamma P}}, \quad E_{\Gamma P} = \frac{3}{2} \cdot m_{BP} \cdot V_{P}^{2} \frac{\rho_{\Gamma P}}{\rho_{BP}}, \quad V_{P} = \frac{D}{2.83\sqrt{\frac{1}{\alpha} - 0.5 + \frac{\rho_{\Gamma P}}{\rho_{BP}}}}$$

де *E* - енергія заряду ВР (для тротилу 4520 кДж/кг), E_{IP} - енергія, що поглинається грунтом; m_{BP} - маса ВР (6 кг); ρ_{IP} - щільність грунту (1,9 г/см³); ρ_{BP} - густина ВР (1,63 г/см³); V_{p} - швидкість розльоту грунту; *D*- швидкість детонації (6930 м/с); $\alpha = 1$ – коефіцієнт наповнення вибухового пристрою

коефіцієнт зменшення маси ВР k=1,723, тоді потужність вибухового пристрою є еквівалентною підриву ВР масою 3,5 кг в ТНТ

Теоретичне та експериментальне визначення вибухового навантаження

0.5

Yac.

Hac. c

ЕКСПЕРИМЕНТАЛЬНЕ ДОСЛІДЖЕННЯ ВЛАСТИВОСТЕЙ ЕНЕРГОПОГЛИНАЮЧОГО ЕЛЕМЕНТА

11

розробка плану експерименту дослідження властивостей 12 енергопоглинаючого елемента

Значення прискорення на сидінні №1 та №4 при підриві БТА "КОЗАК-2" на заряді ВР масою 8 кг в ТНТ еквіваленті.: а – з ініціаторами деформації ЕПЕ; б – без ініціаторів деформації ЕПЕ.

Практичне значення отриманих результатів:

розробка ефективного інструменту для застосування під час обґрунтування вимог та оцінки конструктивних рішень для підвищення рівня локального захисту екіпажу сучасних і перспективних зразків ББМ включаючи етапи початкового проектування.

Реалізація:

1. Харківське конструкторське бюро з машинобудування імені О.О. Морозова;

2.Науково-виробниче об'єднання «Практика»

3.Публічне акціонерному товаристві «Богдан Моторс»

4.Публічному акціонерному товаристві «АвтоКрАЗ»

5.Публічному акціонерному товаристві «Кузня на Рибальському»

6. Центральний науково-дослідний інститут озброєння та військової техніки ЗС України

Зв'язок роботи з науковими програмами, планами, темами:

Підготовка наукової роботи здійснювалась в рамках наукової та науково-технічної діяльності Центрального науково-дослідного інституту озброєння та військової техніки Збройних Сил України:

- ДКР шифри «БТР-ЗК», «Козак-2М», «Варта»;

- НДР шифри «Швидкість-Б», «Перспектива-ПМЗ», «Кремінь-ПМ», «Сталь-СВ», «Корона»

Апробація результатів :

Основні результати наукової роботи доповідались та обговорювались на:

▶ 13 міжнародних, міжвідомчих науково-технічних конференціях та семінарах;

на засіданнях науково-технічної секції науково-дослідного управління розвитку ОВТ Сухопутних військ ЦНДІ ОВТ ЗС України;

на засіданні Групи НАТО з розвитку спроможностей ведення наземного бою «Land Capability Group Land Engagement», (Winterborne Gunner, Salisbury, United Kingdom, 7-9 March 2017);

на засіданні Групи НАТО з розвитку спроможностей систем військовослужбовця у пішому порядку (Land Capability Group, Dismounted Soldier System) та групи з навантаження солдата (Embarked Soldier Working Group, ESWG) (02 - 07 квітня 2017 року, м. Квантіко (США));

≻ на засіданні Групи НАТО з озброєнь сухопутних військ (АС/225, NAAG) Конференції національних директорів з озброєння (20-21 червня 2017 року, м. Лісабон, Португалія) Звіт затверджений рішенням заступника міністра оборони України від 30.06.2017 № 8823/3/1;

Основні положення наукової роботи опубліковано в 36 наукових працях:

≻в 12-ти статтях у наукових фахових виданнях;

≻у 1-му Військовому стандарті

≻у 1-му патенті на корисну модель,

▶ у 4 звітах про оцінку протимінної стійкості «БТР-60», «Тритон», «Варта» та «Барс-8»;

≻у 2-х наукових авторських творах

≻у16-ти тезах доповідей і матеріалах науково-технічних та науково-практичних конференцій;

<u>Додатково відображені:</u>

◆у 5 звітах про НДР шифри «Швидкість-Б», «Перспектива-ПМЗ», «Кремінь-ПМ», «Сталь-СВ», «Корона»