

ЧОРНОМОРСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ імені ПЕТРА МОГИЛИ

ПЕРКОЛЯЦІЙНІ ЯВИЩА У ПОЛІМЕРНИХ НАНОКОМПОЗИТАХ, ЯКІ МІСТЯТЬ ВУГЛЕЦЕВІ НАНОТРУБКИ

ЛИСЕНКОВ Едуард Анатолійович

доктор фізико-математичних наук, доцент

Перколяція: скейлінговий підхід

перехід із непровідного у провідний стан

Теоретичні значення:

3D-система $t \approx 1,6-2, s = 0,73$

D. Stauffer and A. Aharony, Introduction to percolation theory (Taylor and Francis, London, 1994).

Відхилення експериментальних значень критичного індексу *t* від теоретичних

3D-система $t = 0,7 \div 8,4$ $s = 0,42 \div 1,73$

Eletskii A.V., Knizhnik A.A., Potapkin B.V., Kenny J.M. *Phys. Usp.* **58** 209–251 (2015); W. Bauhofer, J.Z. Kovacs *Compos. Sci. Technol.* **69** (2009) 1486–1498

Невідповідність моделей перколяційного кластера до реальних кластерів

Перколяція – критичне явище !!!

Основні завдання:

- 1. Вивчення перколяційних явищ у системах, які містять анізометричні нанонаповнювачі.
- 2. Вивчення перколяційних явищ у системах на основі матриць з високою власною електропровідністю.
- 3. Виявлення інтервалів критичної поведінки системи.
- 4. Встановлення основних механізмів переносу заряду у таких системах та створення більш загальної моделі електропровідності.
- 5. Дослідження структури та властивостей систем поліетер-ВНТ.

Мета роботи:

вивчення структури та функціональних властивостей, а також встановлення особливостей перколяційних явищ у системах на основі поліетерів, наповнених вуглецевими нанотрубками

Об'єкти дослідження

<u>Полімери:</u>

- Поліетиленгліколь (ПЕГ 400), $HO[-CH_2-CH_2-O-]_nH$ ($n \approx 9$) (AppliChem)
- Поліетиленгліколь (ПЕГ 1000), $HO[-CH_2-CH_2-O-]_nH$ ($n \approx 22$) (Aldrich)
- Поліетиленгліколь (ПЕГ 10000), $HO[-CH_2-CH_2-O-]_nH$ ($n \approx 225$) (Fluka)
- Поліпропіленгліколь (ППГ 400), $HO[-CH_2-CH(CH_3)O-]_nH$ $(n \approx 7)$ (Merck)
- Політетраметиленгліколь (політетрагідрофуран) (ПТМГ 1000), $HO[-CH_2-CH_2-CH_2-CH_2-O-]_nH \ (n \approx 14)$ (Aldrich)

Перколяційна поведінка електропровідності систем на основі ПЕГ, ППГ та ПТМГ, наповнених ВНТ

Назва системи	$\varphi_c \cdot 10^3$, об.ч.	Весь діапазон	концентрацій	Фазовий стан	Агрегатний стан
			S		
ПЕГ-400–ВНТ	$2,5\pm0,2$	$1,17 \pm 0,15$	$0,65 \pm 0,09$	аморф.	рідкий
ППГ-400–ВНТ	$2,4\pm0,2$	$1,15 \pm 0,12$	$0,57 \pm 0,06$	аморф.	рідкий
ПЕГ-10000–ВНТ (<i>T</i> = 353 K)	$2,2 \pm 0,2$	$1,23 \pm 0,14$	$0,56 \pm 0,05$	аморф.	рідкий
ПЕГ-10000–ВНТ (<i>T</i> = 293 K)	$1,8 \pm 0,1$	$1,55 \pm 0,18$	$0,43 \pm 0,02$	крист.	твердий
ПТМГ-1000-ВНТ	$1,9 \pm 0,1$	$1,46 \pm 0,18$	$0,\!48 \pm 0,\!05$	крист.	твердий 7

Перколяція – критичне явище: геометричний фазовий перехід

* Камилов И.К., Алиев Х.К. УФН 140 639–669 (1983)

Вплив інтервалу апроксимації на значення критичних індексів

Залежності електропровідності для систем олігоетердіол-ВНТ (при різних температурах та приготованих за різних умов)

Назва	$\varphi_c \cdot 10^3$	$\Delta \varphi \cdot 10^3$	$\Delta \varphi / \varphi_c$	t			
ПЕГ1000-ВНТ (20 °C)	1,60	1,7	0,9	1,63 ± 0,06			
ПЕГ ₁₀₀₀₀ –ВНТ (30 °С)	1,85	1,0	0,73	1,62 ± 0,16		Флуктуаційна	$t = 1,6\pm 0,2$
ПЕГ ₁₀₀₀ -ВНТ (40 °С)	1,90	1,2	0,64	1,56 ± 0,12	10 ⁰ -	область	
ПЕГ ₁₀₀₀₀ -ВНТ (50 °С)	1,90	1,1	0,57	1,58 ± 0,15	, 10 ⁻¹ −	• • *	2 5 KOL
ПЕГ ₁₀₀₀₀ –ВНТ (60 °С)	2,10	0,9	0,42	1,61 ± 0,08	∂/∂	• ПЕГ (400) - ВНТ (V3 2 5 хв.)	 ПЕГ (10000) - ВНТ (20 °С) ПЕГ (10000) - ВНТ (30 °С) ПЕГ (10000) - ВНТ (40 °С) ПЕГ (10000) - ВНТ (50 °С) ПЕГ (10000) - ВНТ (50 °С)
ПЕГ ₁₀₀₀₀ –ВНТ (70 °С)	2,00	1,1	0,55	1,57 ±0,12	10 ⁻²		
ПЕГ ₁₀₀₀₀ -ВНТ (80 °С)	2,20	0,9	0,4	1,55 ± 0,09	10 ⁻³	 ★ ПЕГ (400) - ВНТ (УЗ 5 хв.) ♦ ПЕГ (400) - ВНТ (УЗ 10 хв.) ♥ ППГ (400) - ВНТ 	 ПЕГ (10000) - ВНТ (60°С) ПЕГ (10000) - ВНТ (70°С) ПЕГ (10000) - ВНТ (80°С)
ПЕГ400–ВНТ (УЗ 150 с)	2,50	0,75	0,3	$1,58 \pm 0,08$		$(\varphi - \varphi)$	$/ \varphi_{c}$
ПЕГ400-ВНТ (УЗ 300 с)	2,80	0,7	0,25	1,54 ± 0,08			C
ПЕГ400-ВНТ (УЗ 600 с)	2,90	1,0	0,35	1,57 ± 0,11			
ΠΠΓ400-ΒΗΤ	2,40	2,0	0,83	$1,57 \pm 0,08$			

10

Моделі електропровідності

Моделі електропровідності

Діапазони концентрацій у системах поліетер-ВНТ

Механізми переносу зарядів у системах поліетер-ВНТ $\sigma_{AC}(\omega, \varphi_{c}) \propto \omega^{x} \qquad \mathcal{E}(\omega, \varphi_{c}) \propto \omega^{-y}$ $\varepsilon(\omega) \sim \omega^{y}$ $\sigma_{ac}(\omega) \sim \omega^{x}$ - 10⁴ Модель аномальної дифузії $\sigma_{ac}^{0}(\omega)$ $\frac{1}{2}$ 10³ ε (ω) $x = \frac{\iota}{\nu(2+\theta)}$ $y = \frac{s}{\nu(2+\theta)}$ 10² Модель міжкластерної поляризації $\varphi = \varphi_{c}$ 10¹ $y = \frac{s}{t+s}$ x = ---5 2 3 $\log(\omega)$ t + sМодель міжкластерної Модель аномальної Експериментальні значення 🖌 поляризації 🔪 дифузії Назва системи x x x V $\Pi E \Gamma - 400 - BHT$ 0,83 0,90 0.63 0,37 0.38 0.62 ПЕГ-10000 – ВНТ 0,72 0,76 0,86 0,14 0,61 0,39 0.69 $\Pi\Pi\Gamma$ -400 – BHT 1.06 0.72 0.28 0.37 0.63 0,39 ПТМГ-1000 – ВНТ 0,65 0,42 0,71 0.47 0,53 ۸.

Для системи ПЕГ-400-ВНТ: $h \approx 1$ нм ; $R_c \approx 10^5$ Ом

Шляхи передачі зарядів у системах поліетер-ВНТ

Модель для опису електропровідності систем поліетер-ВНТ

Фрактальна розмірність систем поліетер-ВНТ (співвідношення між критичними індексами)

$$t = \theta v + \beta \qquad v$$
$$s = 2v - \beta \qquad D_f$$

$$v = \frac{1+\beta}{2+\theta}$$
$$D_f = d - \frac{\beta}{\nu}$$

t + s

$$D_f = d - \frac{\beta(2+\theta)}{t+s}$$
 $D_f \approx 2,36$

Масово-фрактальні структури	Нахил, О	D_{f}					
Полімери							
Полімер в гарному розчиннику	- 1,5	1,5					
Набряклий лінійний полімер	-1,67	1,67					
Полімер у тета-розчиннику	-2,0	2,0					
Набрякли розгалужений полімер	-2,0	2,0					
Випадковим чином розгалужений ідеальний полімер	-2,29	2,29					
Нерівноважні процеси зростання							
Агрегат типу "кластер-багато частинок"	- 1,8	1,8					
Перколяційний кластер	-2,5	2,5					
Об'єкти з низькою розмірністю							
Рівномірно розподілені стержні	- 1,0	1,0					
Рівномірно розподілені ламелі або пластинки	-2,0	2,0					
G. Beaucage, J. Appl. Cryst. 29, 134 (1996).							

Теплопровідність систем поліетер-ВНТ

Діелектрична проникність та механічні властивості систем поліетер-ВНТ

Основні висновки

Публікації до роботи

За результатами наукової роботи «Перколяційні явища у полімерних нанокомпозитах, які містять вуглецеві нанотрубки» опубліковано 62 праці, з яких *розділ у монографії*, виданий за кордоном, 48 статей у міжнародних та вітчизняних журналах та 1 патент України на корисну модель. Отримані результати доповідалися на 9 наукових конференціях різного рівня за якими було опубліковано 12 тез доповідей. Згідно з базою даних Scopus загальний індекс цитування публікацій автора, що представлені у роботі, складає 108, h-iндекс = 7, згідно бази даних Google Scholar загальна кількість посилань – складає 217, hiндекс (за роботою) = 8, згідно бази даних Web of Science загальна кількість посилань – складає 95, h-iндекс (за роботою) = 5.